Multivariate contraction mapping principle in Menger probabilistic metric spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Contraction Theorem in Menger Probabilistic Metric Spaces

In this paper, we consider complete menger probabilistic quasimetric space and prove a common fixed point theorem for commuting maps in this space.

متن کامل

A contraction principle in generalized metric spaces

One of the generalizations of the Banach Fixed Point Theorem is due to Matkowski, who replaced contractivity by a weaker but still effective property. The aim of this note is to extend the contraction principle in this spirit for such semimetric spaces that are equipped with a natural generalization of the standard triangle inequality. The stability of fixed points is also investigated in this ...

متن کامل

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

Generalized Contraction Mapping in Probabilistic Metric Space

The probabilistic metric space as one of the important generalization of metric space was introduced by K. Menger in 1942. In this paper, we briefly discuss the historical developments of contraction mappings in probabilistic metric space with some fixed point results.

متن کامل

A generalization of a contraction principle in probabilistic metric spaces. Part II

1.1. t-norms. A triangular norm (shortly t-norm) is a binary operationT : [0,1]×[0,1]→ [0,1] := I which is commutative, associative, monotone in each place, and has 1 as the unit element. Basic examples are TL : I × I → I , TL(a,b) =Max(a+ b− 1,0) (Łukasiewicz t-norm), TP(a,b) = ab, and TM(a,b) = Min{a,b}. We also mention the following families of tnorms: (i) Sugeno-Weber family (T λ )λ∈(−1,∞),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Nonlinear Sciences and Applications

سال: 2017

ISSN: 2008-1898,2008-1901

DOI: 10.22436/jnsa.010.09.17